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Question 1 [16 marks] 

a) Consider C as a vector space over R. Let a € C. What is [a] by definition? Prove 
that 

[a] = {Aa| A € R}. 

[6] 

b) What is a line of the complex plane? State the definition. [3] 

c) Let a,b € C such that a # b. Prove that there exists exactly one line L of the 

complex plane such that a,b € L. [7] 

Question 2 [17 marks] 

Consider C with its standard topology. 

a) Let a€ C ande>0. You are reminded that 

N.(a) := {z € C| |z —a] < e}. 

Now prove that N.(a) MR is an open interval of R. [6] 

b) What is the topology of the subspace R of C? State the definition. [3] 

c) Show that the subspace R of C is the real line. [8] 

Question 3 [14 marks] 

Let >> a,(z — c)* be a convergent power series and ¢ > 0 such that N,(c) is contained in 
the set of convergence of the power series. Let f:N-(c) — C be defined by 

a) Prove that f is n-times differentiable for all n € N and 

Cc 

f(z) = Sok +n)(k+n—1)-...-(B+1)agyn(z — 0)*, 
k=0 

for all n € N and all z € N,(c). With respect to differentiability, what kind of 
function is f? [7]



b) Show that 

  
) 

I “9 =a4,, for all n € No. 

What does this mean for the power series? [5] 

c) What is the Taylor series of f at c? [2] 

Question 4 [12 marks] 

Let X C C and let (fn)n be a sequence of complex-valued functions on X, 

a) State the definition of the limit function of (f,)n. [2] 

b) When does (f,,)n uniformly converge on X? State the definition. [3] 

c) Now assume that (f,,)~j converges uniformly on X to the limit function f. Let (zn) 
be a sequence in X which converges to w € X. Show that (f, (zn) — f(Zn))n is a 

null sequence. If f is continuous at w prove that (f,(zn)m converges to f(w). [7] 

Question 5 [13 marks] 

a) State Cauchy’s integral formula for a disc. [3] 

b) i) Let OC C be open and let f:O — C be a holomorphic function. Let a € O 
and € > 0 such that N.(a) C O. Show that 

  

co 

_ 7 £(Q) _ yk 1=V laa | gms] &-9) 
~ Cz (a) 

for all z € N-.(a). [7] 

ii) Conclude that f is infinitely differentiable. [3] 

Question 6 [14 marks] 

Let O C C be open and let f:0 — C be a holomorphic function. 

a) What is an isolated singularity of f? State the definition. [3] 

b) When is c € C a removable singularity of f? How does one remove such a singular- 
ity? [6] 

c) What is a pole of f? What is the order of a pole? [5]



Question 7 [14 marks] 

Let f:C — {0} — C be defined by 

fla xe=. 

a) Make the Laurent expansion of f at 0 and find the regular and principal part of the 

Laurent series. [3] 

b) What kind of singularity is 0? How does f behave in the vicinity of 0? [5] 

c) Find 

/ evs dé. 

Cx(0) 

[6] 

End of the question paper


